If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p^2-18p+9=0
a = 3; b = -18; c = +9;
Δ = b2-4ac
Δ = -182-4·3·9
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6\sqrt{6}}{2*3}=\frac{18-6\sqrt{6}}{6} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6\sqrt{6}}{2*3}=\frac{18+6\sqrt{6}}{6} $
| 4-p=28 | | 35=45×x | | j-6=47 | | 34=56×x | | 90+86+89+x/4=90 | | s+6.2=23.3 | | 23.3=s+6.2 | | 119+x+x+69=180 | | 130+8x+6=180 | | c/0.08=2.75 | | 7g-13=29 | | m/6+18=23 | | s/6+32=37 | | 4(y+9)=92 | | s-196=1/5 | | x+12=20x+10 | | 1/5s=196 | | 66=2(s-23) | | 4w+15=45-5w | | 16x+7+5x+5=180 | | (5x-1)=82 | | 16(3x-3)=-18(×-10) | | 110+16x+6=180 | | 11-3x=2x-19 | | 5x-1=82 | | 4(j+10)=72 | | t-26=64 | | n-25=95 | | (-10)=(2x+3)(-1-x) | | 5i +9=17 | | 180+x=5x | | s-12=45 |